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Abstract In the present work, we investigated the thermo-

viscoelasticity and fracture toughness of various cured

blends of two epoxy monomers with different molecular

weights: 380 (Epikote 828) and 900 (Epikote 1001). The

blended resins were easily prepared, and miscibility (no

phase separation) in the blended resins was expected. The

composition of the blended epoxy resins ranged from 0 to

100% by weight of the Epikote 1001. The measured damping

factor and dynamic loss modulus in the glass-transition

confirmed that each blended resin had a single phase, i.e.,

they were miscible. The fracture toughness at room tem-

perature increased modestly with the Epikote 1001 content

over the whole range (0–100 wt%). We found that below the

glass-transition temperature, the macromolecular modifica-

tions enabled tailoring of the fracture toughness while

maintaining the glassy bending modulus and with little

change in the glass-transition temperature.

Introduction

Epoxy resins now comprise one of the most important and

largest materials groups in the industrial field. Initially used

as adhesives and tooling and potting compounds, epoxy

resins are now also extensively used in aeronautical,

electronic, fusion reactor, automotive, and structural

applications. However, these highly crosslinked systems

are usually brittle.

Several methods have been developed for toughening

epoxy resins. Incorporating rubber into the epoxy network

is a commonly used method [1–3]. Second-phase disper-

sion of a rigid filler into the epoxy network can also be used

to toughen epoxy resin [4–6]. For example, the addition of

spherical silica particles (silica-particulate-filled epoxy

composites) improves the fracture toughness of epoxy

resins, accompanied by increases in strength, modulus, and

thermal performance [7, 8].

Another approach is to use polymer blending. Polymer

blends have become one of the most interesting means to

obtain new materials with specific properties rather than

synthesis of new polymer. Some properties can be combined

by blending different polymers together and can even be

improved compared to those of the individual components

[9]. Blending with high-modulus and high-glass-transition-

temperature thermoplastics at low contents can improve

fracture toughness without sacrificing the mechanical

properties of the epoxy resins [10–12]. Additionally, a

polymer blend can consist of two different epoxy mono-

mers. One advantage of such a blend is that solvent

resistance is maintained due to the fully crosslinked epoxy

mixture obtained after curing, which overcomes one of the

weak points of modifications with rubbers or thermoplastics.

Another advantage is related to the maintenance or even an

increase in the small-strain mechanical properties of these

dual-crosslinked networks [13]. Furthermore, blends of two

epoxy monomers retain their original density, so they are

lighter than epoxies reinforced by fillers. It is known that not

all desirable properties, such as high toughness, high mod-

ulus, excellent adhesion, good solvent resistance, low

density, and high thermal performance, can be obtained

with any single method. Each method has specific advan-

tages and disadvantages offering tailorability of material

properties.
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The mechanical properties of the cured blend of two

epoxy monomers are still scarcely obtained. Only a few

investigations of these properties have been reported. Sawa

et al. [14] investigated the fracture toughness of a cured

blend of two epoxy monomers with different numbers of

epoxy groups for cryogenic temperature application. They

added diglycidil ether of bisphenol-A (DGEBA) to tetra-

glycidil meta-xylene diamine (TGMXDA) within the range

of 0–100 wt%. Zubeldia et al. [13] investigated the frac-

ture toughness of a cured blend of two epoxy monomers

with different molecular weights. They added Rutapox

0199 (DGEBA with an epoxy-equivalent weight of

2,800 g/equiv, and an average molecular weight of 5,600)

to DER 332 (DGEBA with an epoxy-equivalent weight of

175 g/equiv, and an average molecular weight of 350) at

low contents (0–30 wt%). They found that an increase in

fracture toughness is a result of two factors: phase sepa-

ration and an increase in the overall molecular weight

between crosslinks, which maintains and even increases the

elastic modulus. The phase separation occurs through

curing for monomers with molecular weights of 3,800 but

not 1,800.

In the present work, we investigated cured blends of two

epoxy monomers with different molecular weights: 380

and 900. Blended resins were easily prepared, and misci-

bility (no phase separation) in the blended resins was

expected. Our objective was to investigate the effects of the

macromolecular modifications on the mechanical proper-

ties of miscible blended epoxy resins, especially thermo-

viscoelasticity and fracture toughness. We previously

investigated blended epoxy resins with low contents

(0–30 wt%) of higher-molecular weight epoxy monomer

[15]. Those resins were prepared and examined using

dynamic mechanical thermal analysis, and fracture testing

was done using the three-point bending mode. We have

now extended our previous study by extending the content

range up to 100 wt%.

Specimens

Materials

Two epoxy monomers with different molecular weights,

Epikote 828 (JER 828) and Epikote 1001 (JER 1001), were

obtained from Japan Epoxy Resins Co. Ltd. Both are

produced from DGEBA and epichlorohydrin. Epikote 828

is a liquid epoxy with a viscosity of 13 Pa s at 298 K, an

epoxy-equivalent weight of 190 g/equiv, and an average

molecular weight of 380. Epikote 1001 is a solid epoxy

with (a viscosity of 6 9 10-3 Pa s at 298 K, an epoxy-

equivalent weight of 475 g/equiv, and an average molec-

ular weight of 900.

The curing agent, methyl-tetrahydro-phthalic anhydride

(HN-2200), was obtained from Hitachi Chemical Co. Ltd.

The accelerator, 2,4,6-tris(dimethylaminomethyl) phenol

(Daitocurar HD-Acc43), was obtained from Daito Sangyo

Co. Ltd.

Preparation

Samples were made from mixtures of Epikote 828 and

Epikote 1001 at weight ratios of 100/0, 95/5, 90/10, 80/20,

70/30, 50/50, 30/70, 10/90, 5/95, and 0/100. In this article,

the symbol / is used to represent the Epikote 1001 content

by weight. Epikote 1001 was dissolved in Epikote 828 by

heating at 383 K for 80 min, with continuous stirring in the

last 10 min. The curing agent and accelerator, both heated

to 383 K, were then added to the mixture in stoichiometric

quantities by continuous stirring for 10 min at 383 K. The

complete mixture was then degassed at 383 K in a vacuum

oven.

After the degassing process, the complete mixture was

poured into a preheated mold. The mold (5 9 200 9

300 mm3) was made of an aluminum alloy coated with a

Teflon sheet. The curing process for every complete mix-

ture was carried out in two steps: precuring at 353 K for

3 h and postcuring at 443 K for 15 h. The mixture was then

allowed to cool down naturally in the oven to room tem-

perature. The specimens were machined from the cured

plates to the size required for each test with a diamond saw.

Experiments

Dynamic mechanical thermal analysis

Dynamic mechanical thermal analysis (DMTA) was per-

formed using a dynamic mechanical analyzer (Tritec 2000,

Triton Technology Ltd.) operating in single-cantilever-

bending mode. The test specimens were approximately

3.6 mm thick, 5.2 mm wide, and 30 mm long. Storage

modulus, E0, loss modulus, E00, and damping factor, tan d,

were recorded at each 0.5 K for a heating rate of 2 K/min

from 273 to 453 K at a frequency of 1 Hz. Liquid nitrogen

was used for precise temperature control. The span was set at

12.5 mm, and the amplitude of deflection was set at 15 lm.

Fracture toughness test

Three-point bending tests for measuring mode I fracture

toughness were performed at room temperature using a

universal testing machine (8501, Instron) in accordance

with ASTM standard D5045–90. The specimens were

rectangular bars, 90 mm long, 20 mm wide, and 5 mm

3290 J Mater Sci (2008) 43:3289–3295

123



thick. A slot-notch was cut in them with a saw, and a sharp

crack was initiated with a razor blade. The slot-notch was

9 mm deep, and the sharp crack was approximately 1 mm

deep. The crack length of each specimen was measured

after testing by observing the fracture surface with an

optical microscope. The span was set at 80 mm, and the

deflection rate at the loading point was set at 2.0 lm/s.

Since the load–deformation curve of each specimen was

linear until brittle breaking occurred, meaning that the

stress field near the crack tip was small-scale yielding, we

were able to apply linear elastic fracture mechanics to the

experimental results to determine the fracture toughness.

The critical-stress-intensity factor, KIC, was determined

using [16]

KIC ¼
SPQ

BW3=2
f ðaÞ; ð1Þ

where

f ðaÞ ¼
3a1=2 1:99� að1� aÞð2:15� 3:93aþ 2:7a2Þ

� �

2ð1þ 2aÞð1� aÞ3=2

and

a ¼ a

W
:

The PQ is the maximum load at fracture, and S, B, W,

and a are the span length, thickness, width, and crack

length of the specimen, respectively. The average value of

KIC for each blended epoxy resin was determined using at

least six results.

Results and discussion

Damping factor

Figure 1 shows the damping factor, tan d, of the samples

measured from 273 to 453 K at a frequency of 1 Hz using

the dynamic mechanical analyzer. All the samples had a

single phase, i.e., they were miscible, because they had a

single sharp peak of tan d at the glass transition.

The glass-transition temperature, Tg, defined as the tem-

perature at the maximum value of tan d, is plotted in Fig. 2

for every blended resin. For neat Epikote 828, it was

401.3 K; for neat Epikote 1001, it was 395.6 K. As the

content of Epikote 1001 in the blend, /, was increased from 0

to 30 wt%, the glass-transition temperature dropped rapidly

from 401.3 to 386.4 K. For / from 30 to 70 wt%, the glass-

transition temperature was approximately constant at about

387.0 K. With a further increase in /, the glass-transition

temperature gradually increased from 387.0 to 395.6 K.

Figure 3 plots the maximum value of tan d for the

blended epoxy resins. Those with / from 30 to 70 wt% had

higher maximum values of tan d than neat Epikote 828 and

neat Epikote 1001.

From this tan d characterization, we obtain that the

modified resins (blended resins with / from 30 to 70 wt%)

had lower glass-transition temperatures and higher maxi-

mum values of the damping factor compared with neat

Epikote 828 and neat Epikote 1001. A decrease in the

glass-transition temperature and an increase in the maxi-

mum value of the damping factor are indications of

molecular mixing in blended epoxy resins [17–19]. It is
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possible that these blended resins had greater disorder or

more free volume, which would lower the glass-transition

temperature [20].

Storage and loss moduli

The temperature dependence of the bending loss moduli,

E00, at 1 Hz for the blended epoxy resins is shown in Fig. 4.

It can be observed clearly that each blended epoxy resin

exhibited a single distinct peak of loss modulus. Further-

more, the modified Epikote 828 and 1001 blends exhibited

peak values of loss moduli at lower temperatures than both

neat Epikote 828 and neat Epikote 1001. These results are

consistent with those for tan d.

Figure 5 plots the temperature dependence of the

bending storage moduli, E0, at 1 Hz for the blended epoxy

resins. The storage moduli of the resins in the glassy region

(298 K) and rubbery region (453 K) demonstrated different
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trends, as shown in Fig. 6. The variation in the storage

moduli in the glassy region ranged from 1.3 to 1.7 GPa,

while the blend with / of 30 wt% showed the highest

modulus. In the rubbery region, the storage modulus

dropped rapidly from 17.5 to 12.0 MPa as / was increased

from 0 to 30 wt%. An increase in / from 30 to 70 wt%

caused a slight decrease, from 12.0 to 10.8 MPa. The

storage modulus then gradually increased from 10.8 to

13 MPa as / was increased from 70 to 100 wt%. As

reported by Ogata et al. [21], these different trends for the

storage moduli in glassy and rubbery regions can be

explained by the fractional free volume.

Fracture toughness

The fracture toughness, KIC, at room temperature for each

specimen is shown in Fig. 7. The error bars indicate the

standard deviation. The KIC for the neat Epikote 828 was
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Fig. 5 Temperature dependence of dynamic storage modulus for

blended epoxy resins at 1 Hz: (a) 0 wt% B / B 30 wt% and (b)

50 wt% B / B 100 wt%
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1.06 MPam1/2, which is typical of a brittle thermosetting

polymer [22, 23]. This value is lower than the 1.59 MPam1/2

of the neat Epikote 1001. This agrees well with the results of

Pearson and Yee [24] who found that epoxy resin cured from

a high molecular weight monomer has higher toughness than

that cured from a low molecular weight monomer. Figure 7

also shows that the KIC increased with the content of Epikote

1001 over the whole content range (0–100 wt% Epikote

1001). On the contrary, it was reported that toughening is not

expected in miscible systems [25, 26].

Tailoring mechanical properties

The effects of the compositions of the blended resins on

fracture toughness and thermo-viscoelastic properties are

summarized in Fig. 8. The values of the properties were

normalized by the mechanical property of the unmodified

Epikote 828 resin (/ = 0 wt%). The normalized glass-

transition temperature was calculated using K/K as the

unit.
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Figure 8 shows that adding Epikote 1001 up to 30 wt%

increased the fracture toughness about 12%, increased the

glassy bending modulus about 12%, reduced the rubbery

bending modulus about 31%, and reduced the glass-transition

temperature about 4%. When the Epikote 1001 content was

increased to 50 wt%, the fracture toughness increase was

about 21% while the glassy bending modulus was maintained.

The fracture toughness increase reached 50% when the

Epikote 1001 content was increased from 50 to 100 wt%. This

further increase in fracture toughness was accompanied by a

decrease in the glassy bending modulus of about 7%, a

decrease in the rubbery bending modulus of about 26%, and a

decrease in glass-transition temperature of about 1%.

As mentioned above, these macromolecular modifica-

tions enable independent tailoring of the fracture toughness

while maintaining the glassy bending modulus and with

little change in the glass-transition temperature. Although

the rubbery bending modulus decreased by as much as

38%, this would not affect the use of epoxy resin in

applications. This is because the use of epoxy resins in

applications is usually below their glass-transition tem-

peratures, which are little changed, so there is no need to

consider the rubbery modulus. Furthermore, this blending

provides other benefits such as maintaining good solvent

resistance, which overcomes one of the weak points of

modification with rubbers or thermoplastics, and also

maintaining the density thus lighter than particulate-filled

epoxy composites.

Conclusion

The effects of macromolecular modifications on the

mechanical properties of blended epoxy resins, especially

their thermo-viscoelasticity and fracture toughness, were

investigated. The results for the damping factor and

dynamic loss modulus in the glass-transition showed that

every blended epoxy resin had a single phase, i.e., they

were miscible. The fracture toughness at room temperature

increased modestly with the Epikote 1001 content over the

whole range (0–100 wt%). We found that below the glass-

transition temperature, the macromolecular modifications

enabled tailoring of the fracture toughness while main-

taining the glassy bending modulus and with little change

in the glass-transition temperature.
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